
Please note: This article is OTYS only, and can only be read by users that have logged in.

Overview

The OTYS Site Builder (OTYS CMS) is an easy to use CMS system for our customers, and it is designed with one simple guideline: “Any recruiter should be able to create their own website“.

Read more about the OTYS Site Builder and it’s possibilities on the dedicated documentation page

Activation

An OTYS employee (consultant/support/csm) needs to enable the Site Builder for a client through a partner action in the Your!T CRM: “Enable Site Builder“ this will guide you through the activation.
But still read the information below, as it is useful to understand the dependencies.

Some of the requirements are configured/handled by the partner action, and some you will have to configure yourself.

Dependency Explanation Handled by partner action?

OTYS Client You can only use the cms if you are authenticated as an user of a client of
OTYS No, if no client is present it will tell you

MyOTYS The client will need to have an MyOTYS application admin which we can use
to create an API key for the CMS

No, if no MyOTYS connection can be found, it
will tell you.

CMS Partner The CMS is an partner on it’s own, and only clients that have this partner
enabled will be able to use it.

Yes, the partner action will activate the CMS
partner for the client

Slug system

The CMS can only list/expose jobs when the Slug system is enabled, this is
done via setting: SE3452 but only after careful consideration as the slug system
is not multisite compatible (as of 08-2025) and other websites of the client can
be affected.

No, you will have to configure this after careful
consideration of the clients situation.

Key or Super user present
The client will need at least 1 key or super user, for the Partner action to be
able to add a “CMS Navigation item” to the navigation bar of the customer
trough partner actions.

No, you will have to create one or give
(temporary) rights to an existing user.

API Key Limit not reached For the partner action to be able to create an API key, the clients limit must not
be reached yet. No, you will have to manage this yourself.

WebAPI partner enabled for client The CMS is depending on a connection to the WebAPI and that can only be
made when the WebAPI partner is enabled for the client

Yes, the partner action will activate the WebAPI
partner for the client

WebAPI setting enabled for client The WebAPI activation also depends on setting SE3587 so other WebAPI
settings are configurable for the client Yes, the partner action will activate the setting.

WebAPI Api Key The CMS is depending on a connection to the WebAPI and that can only be
made with such API Key

Yes, the partner action will trigger an creation
request trough the CMS and MyOTYS

At least one user with permissions To be able to actually see the navigation item in OTYS Go! and to use the
CMS, the user should have PA212 enabled.

Yes, the partner action will enable/disable these
rights for the selected users.

There are also some other things to keep in mind while activating the new Site Builder, that this partner action doesn’t remind you about (yet).

Dependency Explanation

New Document Merge Fields Some clients still use the old document merge fields, and those need to be transformed.

Google For Jobs If Google For Jobs is enabled, The websites vacancy details will automatically contain the structured data

Hosted page All websolutions still need an hosted page, to support GDPR, Newsletters and online CV/Job presentation

Technical components

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

Component Technology Internal project Description, what it’s used for

CMS User interface Angular OTYS Website FO Front-end The place a user creates content

CMS Backend (api for interface) Symfony + API Platform OTYS Website FO Back-end The interface talks to the back-end trough an REST API

Website Symfony OTYS Website FO Back-end The website themselves

Web API Symfony + API Platform OTYS Web API A REST API to communicate to OWS

CMS Database PostgreSQL OTYS Website FO Back-end Here we store pages, settings and more

OTYS Web Services PHP OWS Your!T Communication (settings etc)

Below a schematic on how these different components talk to each other

Development flow

Below the description of our development flow. With an example feature: “#123456 CMS: New widget for reviews“

1. A new task get’s created in OTYS Go! (#123456)
2. Assuming this only requires work on OTYS FO Backend, the developer will make a new branch based upon the “stable“ branch, the new branch will be called: “tasks/#123456-CMS-New-widget-for-reviews”
3. Working on their local machine they finish the feature, and merge their branch into “main” (a.k.a. Testing)

https://portal.document360.io/help/docs/test-123

4. After the automatic build is done, they go to test their new feature on Testing, and after confirming it works, they mark the task to be tested.
5. If the testers are done and happy, the task/branch will get merged into “stable” (a.k.a. Staging)
6. And when staging is working with all it’s new features/changes we will move on
7. Making sure if there are new features they are documented in Doc360 and if needed in the Guided tour
8. When we are ready to do a new live push we will replace the current Production environment with the Staging environment.
9. And now that we are live with new features/fixes we make sure to inform any stakeholders (customers) about it.

Technical overview of the CMS Interface (OTYS FO Front-end)

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

Below a list of different frameworks, plugins and tools we use for the CMS interface. We will monitor all these packages and make sure they are always up to date where possible.

Topic Description

Front-end framework Angular We chose for Angular because that’s the most known front-end framework by OTYS Developers as of 2025 and it’s capability of handling large complex applications

Styles using SCSS SCSS also known as SASS is the preferred solution by OTYS Developers

WYSIWYG Editor by NGX-Editor based upon Prosemirror The NGX-Editor does not need any licensing, is lightweight and easy to modify, like we did with links and AI Assistant

Dragging & Sorting by Sortable Sortable is the most lightweight and dynamic library we we able to use.

Translations by Transloco Transloco has is feature rich, and has the features we require

Icons by Font-Awesome FontAwesome is already used in other applications of OTYS and we have a Pro license for it

Sliders by SwiperJs SwiperJs is feature rich and updated frequently.

Colorpicker by NGX-Color-picker NGX Color Picker is the only one as of 2025 that is lightweight and easy to use dynamically like we do

Guided tours by Angular Shepherd Angular Shepherd is really basic, and allows quite some modifications like we require (think of styling and conditional tours)

Tracking by Matomo Matomo is already used by many of our applications to track user behaviour and help us follow customer tracks when bugs occur

Debugging by Faro for Grafana Faro reports timing metrics and debug information to Grafana, so we can identify issues before customers report them.

Package management by Renovate Renovate automatically updates packages via merge requests.

Technical overview of the CMS Backend (OTYS FO Back-end)

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

Below a list of different frameworks, plugins and tools we use for the CMS back-end. We will monitor all these packages and make sure they are always up to date where possible.

Topic Description

PHP version 8+ The latest version of PHP

Back-end framework Symfony Symfony is chosen to be our preferred back-end framework for applications of this scale

REST API via API Platform API Platform is a Symfony plug-in that enables you to create a REST API which is automatically documented

Database on PostgreSQL A relational database system that is similar to MySQL but is more advanced and capable

Content translations trough Gedmo A Symfony package allowing us to mark specific parts as translatable. And it will store the translations for us

View files via TWIG A Symfony templating engine allowing us to create HTML based upon the CMS contents

Grid layout via Bootstrap The go to system for grid layouts.

File storage and serving via Cloudflare We use Cloudflare to serve images,videos and other files uploaded by users. We use smart tools to serve JPG’S & PNG’S as WebP optimizing performance

Firebase JWT Authentication We are using JSON Web Token authenticating via HTTP ONLY cookies, meaning only the server can access it.

Sliders by SwiperJs SwiperJs is feature rich and updated frequently.

Icons by Font-Awesome FontAwesome is already used in other applications of OTYS and we have a Pro license for it

Styles using SCSS SCSS also known as SASS is the preferred solution by OTYS Developers

Package management by Renovate Renovate automatically updates packages via merge requests.

Authentication flow

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

Currently there is only 1 form of authentication, and that is trough OTYS Partner SSO, and that will allow you to access the site-builder and manage content.

It works as follows:

The user clicks the “CMS” icon in their navigation bar in OTYS Go!
OTYS Go! will redirect the user to our authentication endpoint with some POST data, containing a “sessionToken”
Our application will now verify that sessionToken trough the OWS SsoService in combination with the Partner API Key of the CMS project.
When the CMS partner is enabled and everything is correct, we will synchronize the OTYS data with the CMS data.
When Synchronisation is done without any errors, we will authenticate the user
We will create a HTTP Only cookie containing an JWT which represents user data that is only readable by our application because the JWT is encoded with secrets only the app knows
We will now redirect the user to the Front-end. The cookie will be set, but is not accessible with javascript making it extra secure.
We will invalidate this JWT when the user starts using another IP, User-agent etc. Making sure it can never be used when hijacked.
The JWT is now valid for 14 hours, after that the user has to sign in again

Caching

https://angular.dev/
https://sass-lang.com/
https://www.npmjs.com/package/ngx-editor
https://prosemirror.net/
https://www.npmjs.com/package/ngx-sortablejs
https://jsverse.gitbook.io/transloco/
https://fontawesome.com/
https://swiperjs.com/
https://www.npmjs.com/package/ngx-color-picker
https://www.npmjs.com/package/angular-shepherd
https://matomo.org/
https://www.npmjs.com/package/@grafana/faro-web-sdk?activeTab=code
http://grafana.otys/
https://docs.renovatebot.com/
https://www.php.net/
https://symfony.com/
https://api-platform.com/
https://www.postgresql.org/
https://github.com/doctrine-extensions/DoctrineExtensions/blob/main/doc/translatable.md
https://twig.symfony.com/
https://getbootstrap.com/
https://www.cloudflare.com/
https://github.com/firebase/php-jwt
https://swiperjs.com/
https://fontawesome.com/
https://sass-lang.com/
https://docs.renovatebot.com/

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

To make an application efficient—both in using its own resources and in minimizing the load on other services—caching plays a crucial role. Caching refers to the practice of temporarily storing data in a quickly accessible location so that repeated requests for
the same information can be served faster.

For example, instead of retrieving a list of 50 jobs with all their details from OWS every time (which takes about 1.5 seconds), the application can check if the exact same request was recently made. If so, it can return the cached result instead (taking around
0.0003 seconds).

This approach greatly reduces response times, saves processing effort, and avoids unnecessary calls to external or even internal systems.

For the sitebuilder we using various methods of caching on different application layers. Below each method, and an explanation on how it works.

Website caching: Web pages are served with Cache control headers

When you visit one of our clients websites (that are made with the Site-builder) the server will tell (for static pages) your browser may remember the webpage and its contents for at least 60 seconds.
This means for example that when you open a websites homepage and go to the vacancies overview page, you will have asked the server twice for a webpage, which was freshly served to you. But now when you go back to the homepage within 60 seconds, the
browser won’t ask the server for the homepage contents anymore, as the server told your browser to keep it in mind for at least 60 seconds.
Of Course for more dynamic pages like application forms etc. We wont send such “Cache-Control” headers. The current “Cache-Control” looks something like this:

cache-control max-age=60, private, stale-while-revalidate=60

The “private” part is an important part of this “Cache-Control” header, as it will tell servers that are serving this content to never cache it themselves, and this content can only be cached by the end-user.

Website caching: Styles, fonts & scripts are served with Cache control headers

A web page consists of more then just “HTML”; It also requires stylesheets, scripts, fonts and images/videos. For this caching method we are focussing on those stylesheets, scripts & fonts.
If any of those files get’s served by our server it will also respond with an “Cache-Control” header, however a more efficient one, that will tell the browser to cache the contents for a whole year!
That “Cache-Control” headers looks like this:

cache-control public, max-age=31536000, immutable

The “public” part is an important one for this “Cache-Control” header, as it will tell servers that they can cache it themselves as well, and serve everyone the same version.

Website caching: Images & videos are served with Cache Control headers

All websites have multimedia (like images and videos), for the Site-Builder we store that type of content not on our own servers, but on those of Cloud-flare a third party specialised in serving content quickly and efficiently.
If a customer uploads for example an JPG for their header, we will (on the website it self) serve it as an WebP file, this is done through Cloud-flare, which on it’s end also server-side caches these files, so even when it’s not cached by the browser, they will be
served rapidly from one of their web servers nearby the user. Cloudflare also sends one year Cache-Control headers with these images & videos and they look something like this:

cache-control max-age=31536000

Server side caching: Requests to OTYS API’s are cached on the server

Our back-end (Symfony) is also caching data, for example requests to the Web API or OWS are cached. If you visit a customers website and go to the vacancies overview chances are high that you were served cached content. Whenever the back-end needs to
return data that relies on OWS or the WebAPI it first checks if it doesn’t already have that specific data in its cache, and if so returns that. And if it does a request that wasn’t stored in cache yet, it will store it in cache after retrieving the data “live”. When storing
those cache items in Symfony’s file system cache, it gives it a name (key) based upon the request, but also smartly tags it, with for example the client_id, vacancy_id or even matchcriteria_id. So if we later want to remove all cache for a client or certain criteria
we can do that. (In the Site-builder configuration you can click the “Remove cache” button.

Server side caching: Invalidating cache records with webhooks

When the Site-builder is activated for a customer for the first time, we will also register webhooks through the WebApi, these webhooks will tell the Site-builder if a client makes changes to vacancies, match criteria or even application forms. So if any website
related content in OTYS Go! changes, we are notified immediately and invalidate (remove) cache related to that change, which is done by cache-tags you can read about above.

CMS User Interface caching: Cache semi-static data in localstorage

When a user is working in the CMS it (in the background) needs to have quite a bit of data, think of possible widgets, sections etc.. Instead of loading these from the server every time they need them, we cache such information in the browsers ‘local storage’
function. This way the CMS is quicker and more efficient with server resources.

Translations

Within this project we have multiple ways of translating content and interfaces. There are 4 different types of translations, below for each type explained how it is stored, translated and used.

Website content translations

When a client creates a multilingual website, they can translate their content in multiple languages (the languages they have in OTYS Go! defined in DB109). Content is stored in “control_values” these are then connected to widgets, footers etc.. Translated
content is stored in “control_value_translations” which are connected to “control_values”. This is automatically managed by Gedmo. Read more on translating content here.
Possible languages for this type of translation are: "Dutch","English","German","French","Czech","Spanish","American English","Polish","Slovak","Romanian","Turkish","Russian","Ukrainian" & "Danish"

Website static translations

Some words or sentences are not editable by the customer, and are managed in the Symfony project trough these files /translations/fo.[langcode].yaml. Things like: “404 - Job not found“ or the labels of flags: “Dutch“, “English“. For now these are not editable by
the client and are the same for all clients. We might change this in the future.
For this we use the default Symfony translation interface.
Possible languages for this type of translation are: "Dutch","English","German","French","Czech","Spanish","American English","Polish","Slovak","Romanian","Turkish","Russian","Ukrainian" & "Danish"

Control definition translations

In the backend we have defined which widgets, sections, and inputs there are. For example widgets have controls, like “Header title” or “Background color” to explain to the user in the CMS what they are editing we have given these controls translations as well.
All controls consist of an “Label” and an “Explanation” (the info icon). These translations are stored and managed in the Symfony project: /translations/ui.[langcode].yaml.
For this we use the default Symfony translation interface.
Possible languages for this type of translation are: "Dutch","English","German","French"

CMS Interface translations

The CMS interface also is translated and it’s translations are stored in the /assets/i18n/[langcode].json files.
For this we use the Angular Transloco plugin.
Possible languages for this type of translation are: "Dutch","English","German","French"

The different entities & the logic behind the data structure

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

The sitebuilder has a specific way of storing content & settings. Below explained how different entities are set up, what they consist of and how they are stored.

Client

The entity mirroring OTYS clients. This entity is persisted in the database.

Property Data type Explanation

id UUID An unique identifier

otysClientId Integer The uid of a client in OTYS.

otysApiKey Varchar The (openssl) encrypted Api key of a client used for WebApi communication

languages Text Comma separated language codes, in sync with DB109

lastSync Timestamp A timestamp representing the last sync. Syncs are done every authentication

Website

The entity mirroring OTYS websites. This entity is persisted in the database.

Plain text

Plain text

Plain text

https://portal.document360.io/help/docs/creating-content#translate-content

Property Data type Explanation

id UUID An unique identifier

otysSiteId Integer The id of the website in OTYS (1, 2, 3 etc..)

domain Varchar The Custom Domain of a website

domainVerified Boolean Whether we have verified ownership of the custom domain

domainPointingToOtys Boolean Whether we have seen the A-Record pointing to our servers at least once

theme Varchar Which theme is in use

finishedOnboarding Boolean Whether this websites onboarding was completed

otysBrandName Varchar The name of the website as it is called in OTYS

brandPrefix Varchar The prefix in front of .otys.website

defaultLanguage Varchar The default language of this website

active Boolean If an OTYS site is removed, we deactive it with this

live Boolean Mark an website as live, (and we will register webhook)

clientId UUID Connection to the client entity

homePageId UUID Connection to the websites homepage (page entity)

vacanciesOverviewId UUID Connection to the websites vacancies overview (page entity)

footerId UUID Connection to the websites footer (footer entity)

redirectToWww Boolean If enabled custom domain websites will use www. in front of it

lastSync Timestamp A timestamp representing the last sync. Syncs are done every authentication

Website Setting

This entity is used for storing website related configuration, like: fonts, colors, brandname, logo etc..

Property Data type Explanation

id UUID An unique identifier

name Varchar The website setting ENUM reference (so the type of setting)

websiteId UUID Connection to website

controlValueId UUID Connection to a controlValue entity storing the setting value

Web Api Token

This entity is used to store the WebApi token (JWT) for a client, this is done by exchanging the Api key of a client.

Property Data type Explanation

id UUID An unique identifier

accessToken Text The JWT

expiresIn Timestamp The date this token will expire

clientId UUID Connection to the client it belongs to

Footer

This entity represents the footer of an website. Mostly used to define the type and connect controlValues to.

Property Data type Explanation

id UUID An unique identifier

type Varchar The Footer Enum

Page

One of the most important entities. Every website has pages.

Property Data type Explanation

id UUID An unique identifier

published Boolean Whether this page should be reachable.

hideInNavigation Boolean Whether to show this page in the navigation bar

title Varchar The page title, shows up in navigation and browser tab

position Integer A numeric value representing the order of the navigation

slug Varchar The URL of this page.

useExternalUrl Boolean A page can be marked as external with this

externalUrl Varchar When someone clicks this page in the navigation they get redirected here.

creationDate Timestamp The timestamp of when this page was created

lastUpdatedDate Timestamp The timestamp of when this page was last updated

metaDescription Varchar The SEO meta description of a page

metaKeywords Varchar The comma seperated keywords of a page

noIndex Boolean Whether to let this page be indexed by search engines

websiteId UUID The connection to the website this page belongs

parentId UUID Possible connection to a parent page, it will then show up as a child item

metaOgImageId UUID Reference to mediaObject for the OG (sharing) image

Page translation

An entity managed by the Gedmo plugin, storing certain field translations in different languages.

Property Data type Explanation

id Integer An unique identifier

locale Varchar The locale this translation is for

objectClass Varchar A PHP class reference

field Varchar Which field of the class (example: textValue)

foreignKey UUID The UUID of the translated controlValue

content Text The actual translation

Section

This entity is making up the horizontal building blocks of a website.

Property Data type Explanation

id UUID An unique identifier

padding Varchar How much space inside the section based upon enum(xs, s, m, l, xl)

margin Varchar How much space outside of the section based upon enum (xs, s, m, l, xl)

fullwidth Boolean If true the columns spread the entire page width instead of the container

verticalAlignColumnsCenter Boolean Whether to vertically align the columns center

backgroundColor Varchar A HEX Color code for the background of the section

textColor Varchar A Hex color code for the text color of the section

position Integer A numeric value representing the order of sections

pageId UUID The connection to the page this section is on

Bootstrap Column

This entity is making up the vertical building blocks of a website. (Column is a reserved table name, so picked Bootstrap Column)

Property Data type Explanation

id UUID An unique identifier

span Integer A number between 1 and 12 defining the relative width

bootstrapOffset Integer A number between 1 and 12 defining the offset (left) relative

position Integer A numeric value representing the order of columns

sectionId UUID The connection to the section this is in

Widget

This entity is representing all different kinds of content. Based upon a type enum. Widget definitions are defined by code.

Property Data type Explanation

id UUID An unique identifier

type Varchar One of the widget Enums

position Integer A numeric value representing the order of widgets inside a column

bootstrapColumnId UUID The connection to the bootstrapColumn this is in

Control value

This entity is representing all dynamically stored data based upon the abstract entity “Control” which is just an enum.

Property Data type Explanation

id UUID An unique identifier

name Varchar The name based upon the abstract controls

type Varchar The control type

stringValue Varchar If the control type is defined to use stringValue as storage this field will contain the value

booleanValue Boolean If the control type is defined to use booleanValue as storage this field will contain the value

integerValue Integer If the control type is defined to use integerValue as storage this field will contain the value

textValue Text If the control type is defined to use textValue as storage this field will contain the value

position Integer A numeric value representing the order of a control (only when it has a parent, like a repeater)

mediaObjectId UUID If the type is mediaObject this represents the value as a connection

footerId UUID The possible connection to a widget, uniquely connected through id and name

widgetId UUID The possible connection to a widget, uniquely connected through id and name

parentId UUID The possible connection to a parent control (repeater controls us this)

Control value translation

An entity managed by the Gedmo plugin, storing translations in different languages.

Property Data type Explanation

id Integer An unique identifier

locale Varchar The locale this translation is for

objectClass Varchar A PHP class reference

field Varchar Which field of the class (example: textValue)

foreignKey UUID The UUID of the translated controlValue

content Text The actual translation

Media Object

A quite versatile entity, used for Folders and actual file references

Property Data type Explanation

id UUID An unique identifier

name Varchar Initially this represents the filename, but is updatable, or the foldername

type Varchar Either “folder” or “media”

alt Varchar Alternative text for when the resource is not loaded (yet)

creationDate Timestamp When this folder or file was created/uploaded

lastUpdatedDate Timestamp When this item was last updated

mimeType Varchar The mimeType of the file (or nothing in case of folders)

focalPointX Integer The position on the X axis where the subject should be according to the user

focalPointY Integer The position on the Y axis where the subject should be according to the user

size Integer The filesize defined in bytes

clientId UUID The connection to the client entity

parentId UUID The connection to a possible parent entity

Example: A written down explanation of how a “Header Advanced Widget” is set up in the code

In the project there is a Enum that defines the “HEADER_ADVANCED” case, it defines which Class represents it, so later on when a page is rendering we know based upon that string in the database “HEADER_ADVANCED” what Class defines it, and how to
render it. This Class tells us the following:

Widget name in this case: “Header Advanced“ (used for picking it in the CMS interface)
Widget category, in this case “Headers” (used for picking it in the CMS interface)
Minimum columns, in this case: “12“ (only shows up in the widget picker of a section that has a 12 column bootstrap configuration)
Controls, in this case:

Wysiwyg Control (Keep in mind that these controls are classes as well, and in those classes is defined how they are setup to store data)
Name: “text” (The control name is stored in the database as a reference to this control)
Label: “Content“ (The label is shown in the interface on top of the control)
Explain: “The content on top of the images“ (The tooltip contents behind the question mark icon in the interface)
Category: “Content” (In the interface there are often 2 category tabs, content and configuration)
Translatable: “True” (Whether this value is translatable)

Repeater Control
Name: “slides”
Label: “Slides“
Explain: “This slides to show in the header“
Category: “Content”
Controls:

Image
Name: “image”
Label: “Image“
Explain: “The image to show in the header, it will be used as a background image“

Select control
Name: “aspect_ratio“
Label: “Aspect ratio“
Explain: “The aspect ratio of the header, 'auto' will use the content as a reference, while the others will set a fixed a width to height ratio“
Options: […. The options….]
Default value: “4 / 1”
Device: “Desktop“ (This controls value is only used for desktop, other controls are defined for the tablet and mobile value)
Category: “Configuration“

And many more controls, like the other aspect_ratios and animation, speed, autoplay, pagination etc…
Template: “/widgets/header_advanced_widget.html.twig“ (The template where it’s HTML is defined)
Icon: “fa-regular fa-pager“ (A FontAwesome class for the icon)

Deployment configuration

Please note that this could be an complex topic, documented for our technical colleagues. We do not expect everyone to comprehend this.

Some things are different for each deployment of the Site-builder, think of database, partner, settings, cloudflare. below an overview

Production

URLS
URL UI: https://cms.otys.app
URL Websites: [brandname].otys.website
URL Websites: https://customdomain.com
URL API For UI: https://cms.otys.app/api/

Partner
“OTYS CMS” - https://otys.otysapp.com/nl/modular.html#/partners/158
Setting to enable cms for an user: PA212

Database
Host: pgdb01.otys
DB: otys_websites
Type: PostgreSQL (TCP/IP)

Cloudflare
Bucket: otys-cms-public
CDN URL: https://cms.otyscdn.com/
OWS Connection

URL: https://ows.otys.nl
WebApi

URL: https://webapi.otys.app/api

Staging

URLS
URL UI: https://cms-staging.otys.app/
URL Websites: [brandname].otys.website (With Request Header: X-Otys-Cms-Env: staging)
URL Websites: https://customdomain.com (With Request Header: X-Otys-Cms-Env: staging)
URL API For UI: https://cms-staging.otys.app/api

Partner
“OTYS CMS” - https://otys.otysapp.com/nl/modular.html#/partners/158 (Same as production)
Setting to enable cms for an user: PA212 (Same as production)

Database
Host: pgdb01.otys
DB: otys_websites_staging
Type: PostgreSQL (TCP/IP)

Cloudflare
Bucket: otys-cms-public-staging
CDN URL: https://cms-staging.otyscdn.com/
OWS Connection

URL: https://ows.otys.nl
WebApi

URL: https://webapi-staging.otys.app/api

Testing

URLS
URL UI: https://cms-testing.otys.app/
URL Websites: [brandname].otys.website (With Request Header: X-Otys-Cms-Env: testing)
URL Websites: https://customdomain.com (With Request Header: X-Otys-Cms-Env: testing)
URL API For UI: https://cms-testing.otys.app/api

Partner
“OTYS CMS Testing” - https://otys.otysapp.com/nl/modular.html#/partners/152
Setting to enable cms for an user: PA211

Database
Host: pgdb01.otys
DB: otys_websites_testing
Type: PostgreSQL (TCP/IP)

Cloudflare
Bucket: otys-cms-public-testing
CDN URL: https://cms-testing.otyscdn.com/
OWS Connection

URL: https://ows.otys.nl
WebApi

URL: https://webapi-test.otys.app/api

Accessing non-production version of the Site builder

When testers, product managers & developers need to access the application on another environment then production they are able to do so. Below an explanation of how this works & what to do.

As you can see in the deployment configuration above, the database and partners of staging & testing differ from production, this means live website of clients are only on production, and they can’t be accessed on testing or staging. You can
however create similar websites on testing/staging and test new features or bug-fixes that way.

Only enable the staging or testing CMS on test clients, and never on production clients! If you doubt this statement, make sure to talk to developers first before taking any action.

Always make sure the production CMS is already enabled, and that this client meets all requirements for Activation. You will otherwise run into errors and cause troubles for any future activation.

Accessing websites on staging or testing.

If you go to “brandname.otys.website” our servers will by default serve you the production version of that website. Sometimes this isn’t what you want, in that case it’s possible to tell our servers you want either the staging/testing version of that website. We do
this by adding a custom header to the request called: “X-Otys-Cms-Env”. Browser plugins like “Simple Modify Headers“ for Google Chrome help you doing that.
In case you have installed “Simple Modify Headers” you can open it, and configure it to Add a new header “X-Otys-Cms-Env“ and with an value of either: “staging“ or “testing”. Now be sure to click the “Start” button in this plugin, and your are ready to go.

 Any new requests to websites will contain this extra header. If our servers detect it, it will serve you either the staging or testing version of our application. However, make sure that you have configured such website with such domain on either staging or testing,
otherwise it ofcourse wont show.

Accessing the CMS on staging

If you want to be able to use the Staging version of the CMS for a TEST-client where it is not already enabled, you can do this pretty easily by only adding an extra partner action to the navigation menu of this client.
Do note, that the production version of the CMS should already be enabled for this client!
Before performing any of the steps below, check if the Staging version is not already activated for the client, you can do this by checking the clients navigation menu for a CMS icon, which is called: “OTYS CMS Staging“

1. Sign in as the desired TEST client with user OTYS Admin
2. Make sure only the Production CMS is enabled right now by checking the navigation menu , if there is already a staging button, it was already activated for this client.
3. Open “Client setting” and search for: GE288
4. Open setting GE288
5. Here you will find the production partner action for the cms that is in the navigation menu of this client.

You can identify it, by the Name & Module

https://cms.otys.app/
https://customdomain.com/
https://cms.otys.app/api/
https://otys.otysapp.com/nl/modular.html#/partners/158
https://cms.otyscdn.com/
https://ows.otys.nl/
https://webapi.otys.app/api
https://cms-staging.otys.app/
https://customdomain.com/
https://cms-staging.otys.app/api
https://otys.otysapp.com/nl/modular.html#/partners/158
https://cms-staging.otyscdn.com/
https://ows.otys.nl/
https://webapi-staging.otys.app/api
https://cms-testing.otys.app/
https://customdomain.com/
https://cms-testing.otys.app/api
https://otys.otysapp.com/nl/modular.html#/partners/152
https://cms-testing.otyscdn.com/
https://ows.otys.nl/
https://webapi-test.otys.app/api
https://portal.document360.io/help/docs/nieuwe-cms-private-internal#activation
https://chromewebstore.google.com/detail/simple-modify-headers/gjgiipmpldkpbdfjkgofildhapegmmic

6. Open this action, to reference it’s contents, you will need to almost create an identical copy of it.

7. Close the original, and click: “Add new“ to create a new navigation button, for the staging CMS.
Fill in the navigation item like below, making sure the call it: “OTYS CMS Staging“, and making sure to leave out the visibility check
Because this is always performed in an test client, we don’t need the visibility check, and any user may see the icon.

8. Now refresh OTYS Go!, and see that your new navigation item has appeared

9. Now when you click this button, the activation of the Site-builder is triggered on staging. This means it will run lot’s of scripts, one of which is creating the WebApi key trough MyOTYS.
This new API Key is not instantly ready for use, as the connected user is to “new” to be used right away, and you will have to wait for at least a few minutes before it will be usable. Your interface of the CMS most probably will throw some errors, just wait a
few minutes before opening the cms again.

10. And that’s it, you have enabled the CMS for the test client, and you can start creating a new website and try out features from staging.

Accessing the CMS on testing

If you want to be able to use the Testing version of the CMS for a TEST-client where it is not already enabled, you can do this by configuring the partner, partner-setting & adding an extra partner action to the navigation menu of this client.
Do note, that the production version of the CMS should already be enabled for this client!
Before performing any of the steps below, check if the Testing version is not already activated for the client, you can do this by checking the clients navigation menu for a CMS icon, which is called: “OTYS CMS Testing“

1. Start by adding your TEST client to the activated clients of the partner “OTYS CMS Testing” - https://otys.otysapp.com/nl/modular.html#/partners/152

2. Sign in as the desired TEST client with user OTYS Admin
3. Make sure the Production CMS is enabled right now by checking the navigation menu , if there is already a testing button, it was already activated for this client.
4. Now go to user settings, and search for PA211
5. Enable this setting for all users you want to be able to use the CMS
6. Now go to client settings and search for: GE288
7. Open setting GE288
8. Here you will find the production partner action for the cms that is in the navigation menu of this client.

You can identify it, by the Name & Module

9. Open this action, to reference it’s contents, you will need to almost create an identical copy of it.

10. Close the original, and click: “Add new“ to create a new navigation button, for the staging CMS.
Fill in the navigation item like below, making sure the call it: “OTYS CMS Testing“, and making sure to leave out the visibility check
Because this is always performed in an test client, we don’t need the visibility check, and any user may see the icon.

https://otys.otysapp.com/nl/modular.html#/partners/152

11. Now refresh OTYS Go!, and see that your new navigation item has appeared

12. Now when you click this button, the activation of the Site-builder is triggered on staging. This means it will run lot’s of scripts, one of which is creating the WebApi key trough MyOTYS.
This new API Key is not instantly ready for use, as the connected user is to “new” to be used right away, and you will have to wait for at least a few minutes before it will be usable. Your interface of the CMS most probably will throw some errors, just wait a
few minutes before opening the cms again.

13. And that’s it, you have enabled the CMS for the test client, and you can start creating a new website and try out features from testing.

